Modeling and Scaling of the Viscosity of Suspensions of Asphaltene Nanoaggregates
نویسندگان
چکیده
The scaling and modeling of the viscosity of suspensions of asphaltene nanoaggregates is carried out successfully taking into consideration the solvation and clustering of nanoaggragates, and the jamming of the suspension at the glass transition volume fraction of asphaltene nanoaggregates. The nanoaggregates of asphaltenes are modeled as solvated disk-shaped “core–shell” particles taking into account the most recent small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and solid-state 1H NMR studies available on the size and structure of asphaltene nanoaggregates. This work is an extension of our earlier studies on modeling of asphaltene suspensions where solvation of asphaltene nanoaggregates was not considered. A new mathematical model is developed for estimating the aspect ratio (ratio of thickness to diameter of particle) and the corresponding intrinsic viscosity of suspension of solvated disk-shaped asphaltene nanoaggregates using the experimental relative viscosity data of suspensions at low asphaltene concentrations. The solvation of asphaltene nanoaggregates is found to be significant. The intrinsic viscosity increases with the increase in the degree of solvation of nanoaggregates. At high concentrations of asphaltenes, clustering of solvated nanoaggregates dominates resulting in large viscosities. A new scaling law is discovered to scale the viscosity data of different asphaltene suspensions. According to the new scaling law, a unique correlation is obtained, independent of the type of asphaltene system, when the data are plotted as (ηr − 1)/[η]S versus φS where ηr is the relative viscosity of suspension, [η]S is the intrinsic viscosity of suspension of solvated nanoaggregates, and φS is the volume fraction of solvated nanoaggregates. Twenty sets of experimental viscosity data on asphaltene suspensions gathered from different sources are used to verify and confirm the scaling law and the viscosity model proposed in this work. Based on the experimental data, the glass transition volume fraction of solvated asphaltene nanoaggregates where jamming of suspension, and hence divergence of viscosity, takes place is found to be approximately 0.4. The viscosity model proposed in this work can be used to predict the viscosity of a new asphaltene system over a broad range of asphaltene concentrations provided that the intrinsic viscosity of the suspension is obtained from viscosity measurements at very low asphaltene concentrations.
منابع مشابه
Experimental Investigation and Modeling of Asphaltene Precipitation Due to Gas Injection
Asphaltene instability is one of the major problems in gas injection projects throughout the world. Numerous models have been developed to predict asphaltene precipitation; The scaling equation is an attractive tool because of its simplicity and not involving complex properties of asphaltene. In this work, a new scaling model is presented to account for asphaltene precipitation due to gas ...
متن کاملCooee bitumen. II. Stability of linear asphaltene nanoaggregates.
Asphaltene and smaller aromatic molecules tend to form linear nanoaggregates in bitumen. Over the years bitumen undergoes chemical aging and during this process, the size of the nanoaggregate increases. This increase is associated with an increase in viscosity and brittleness of the bitumen, eventually leading to road deterioration. This paper focuses on understanding the mechanisms behind nano...
متن کاملApplication of Rheological Modeling in Food Emulsions
Various scaling methods such as relative viscosity, Peclet and Reynolds scaling were used to find the best scaling law. Scaling and modeling of the flow curves of various model emulsions consist of Tragacanth Gum (TG) (0.5, 1 % wt), Oleic acid (5, 10% v/v) and WPI (2, 4 % wt) were investigated and the best models were selected. As these emulsions are non-Newtonian, they do not obey the usual...
متن کاملNon-Newtonian behavior and molecular structure of Cooee bitumen under shear flow: A non-equilibrium molecular dynamics study.
The rheology and molecular structure of a model bitumen (Cooee bitumen) under shear are investigated in the non-Newtonian regime using non-equilibrium molecular dynamics simulations. The shear viscosity, normal stress differences, and pressure of the bitumen mixture are computed at different shear rates and different temperatures. The model bitumen is shown to be a shear-thinning fluid at all t...
متن کاملA New Approach to Simultaneously Enhancing Heavy Oil Recovery and Hindering Asphaltene Precipitation
A new chemical compound is developed at Petroleum University of Technology to enhance the recovery of the free imbibition process and simultaneously hinder asphaltene precipitation. The compound is tested on heavy oil samples from Marun oil field, Bangestan reservoir. The effects of the chemical compound on viscosity, hydrocarbon composition, and average molecular weight of the heavy oil are in...
متن کامل